GetList Function for Protocol Translator
(Version – 8/2/2007 4:28 PM)
Overview
This function will be available through the Software Authority Protocol Translator and will provide lists of available objects of different types to third party developers and outside control and UI applications. It will provide lists of routers, sources, destinations, Elements, etc. This specification is a work in progress. To use this function, see the PathfinderPCServer instructions on how to add a Software Authority Protocol Translator into the system. You be logged into the translator with a valid user name and password before the GetList Function will be available.
Scenarios
1) John the sedentary station manager decides he wants to build a new stack event to start his coffee brewing when he loads his profile in the morning. Since the IT department will not let him near the server room, and his sedentary lifestyle makes the flights of stairs abhorrent to get there anyway, it is important that he be able to build this new event from a simple User Interface on his workstation that can then be copied or uploaded to the server. (See stack event UI tool spec in development). In order for this to work the new UI tool must be able to obtain the lists of closures and profiles so that he can select his profile and the GPIO contact closure for the coffee maker. Enter GetList Function.
2) A new Automation System developer, Automated Disc Jockeys, wants to support Axia. Since PFS already does all of the hard work of finding and communicating with all of the equipment, it makes sense for the automation system to talk through PFS. But the system designer wants to be able to display the route names in their User Interface for macro development, etc. Enter GetList Function.

Nongoals

1) While this function will duplicate some already existing listing functions, we will leave the other functions intact for existing users in the field. We will not phase out those functions.

2) Within PFS are already several functions for obtaining lists of routers, sources, Destinations, etc. Where possible these will be reused, but if formatting does not match, we will be willing to make duplicate functions to create the list rather than shoe-horning the existing one into supporting the new format as well or redeveloping the format across the application as that is likely to break more than it will fix. This kind of optimizing can be left where necessary to the rewrite during the migration to .Net.
Usage Notes
In order to reduce server load and make the client application able to appear more responsive when large lists are involved, each call to GetList will also return a Version number based on date, time, and a number. The return from GetList should then be cached by the calling application along with the version number so that it may be used repeatedly without re-downloading the list. The calling application can check if the list has changed by using the GetListVersion call which will return only the version of the specific List in question. If the version has not changed from what is in the client application’s cache, then the client already has up to date information.

Some commands may also list aliases for the list types. These aliases may be used in place of the full list type argument.
Key

1) In this document CRLF means a carriage return followed by a linefeed.
2) All commands need to be terminated with a CRLF
3) All lines in returned commands will be terminated with CRLF
Syntax
GetList <ListType> <Arguments>
Examples:

1) GetList Routers

2) GetList SourceNames 1
The return from each command will present rows of data separated by CRLF. The command return will always start with a line that says BeginList and a recap of the ListType and Arguments followed by a space and a version number.
BeginList SourceNames 1 2007-07-14_14-26-07_001

The version number is the date and time followed by a three digit number in the format yyyy-mm-dd_hh-mm-ss_xxx.

It will end with a line that says EndList. Columns will be separated by tabs. The first row after the BeginList line will always carry column names. Each row’s first column will be an availability column which will define whether the row’s resources are available for use, and if not why. This column will use the following key:
0 = Available

1 = User Locked

2 = System Locked

3 = Disabled Stream

4 = Host Device is offline

5 = Service Not Running
The availability column is important because the application will usually want to skip and not display resources that are not available. But in some cases you will want to display all resources regardless of whether they are available. For example, Engine Destination routing may not be changed by PFS. So a route change action should not display these destinations as available for making a route change action. However, you may want to make a qualifier that executes some action if the Engine itself changes the route assigned to one of its destinations. So the qualifier section should display all resources whether they are available or not.
TechNotes:
The XML Configuration for the stack event properties for the new Flow Chart Stack Event UI should include several fields to determine what is displayed from the returned list.

<DisplayAvailability>0,1,4,5</ DisplayAvailability >

This defines that rows that are system locked or disabled should not be listed in the UI.

<DisplayColumns>2,3</DisplayColumns>

This defines which columns of returned data will be displayed – Column counts start with 0 which is always the availability column.

<StoredColumn>1</StoredColumn>

This defines which single column of returned data will be stored as the selected value when the stack event property is stored.

In order to reduce the server load the list and its version number should be cached by the calling application. Use the GetListVersion to see if the list has changed before calling GetList for the same list again.

Return Example:

(Note: The example below has multiple tabs between some columns for readability. The actual implementation will only have 1 tab between columns.)

BeginList SourceNames 1 2007-07-14_14-26-07_001
Avail
ID
Name

Description

0

1
MySource
This is my Source

0

2
YourSource
This is your Source

EndList
Required Lists

1) Routers – Returns the list of routers in the system (Aliases – rtr)
Command

GetList Routers <RouterType>
If RouterType is absent a list of all routers will be returned.
Available Device Types include:

ZSystems

Sigma

Videoquip

NTIVeemux

SAPort

AxiaAudio

AxiaGPIO

Metered (Only returns routers that support metering and therefore silence detection/clipping/audio present)

GPIO (Only returns GPIO style routers)

Virtual

Gateway

Generic
Example:
GetList Routers AxiaAudio
Return Columns

Availability

ID

Name

Description

Type

SourceCount

DestinationCount

Example:
BeginList Routers 2007-07-14_13-15-22_001
Avail
ID
Name

Description

Type

SourceCount
DestinationCount
0
1
WZZZ Audio
Main Audio Router

AxiaAudio
758

323
0
2
WZZZ GPIO
Main GPIO Router

AxiaGPIO

253

253
EndList

2) SourceNames – Returns the list of source names in a router in the system (Aliases – source, src, sn)
Command

GetList SourceNames <RouterNumber>

Example:
GetList SourceNames 1

Return Columns

Availability
ID

Name

Description
Example:
BeginList SourceNames 12007-07-14_13-15-22_001
Avail
ID
Name

Description

0

1
MySource
This is my Source

0

2
YourSource
This is your Source

EndList

3) DestinationNames – Returns the list of destination names in a router in the system (Aliases – dest, dst, dn)
Command

GetList DestinationNames <RouterNumber>

Example:
GetList DestinationNames 1

Return Columns

Availability

ID

Name

Description

Example:
BeginList DestinationNames 1 2007-07-14_13-15-22_001
Avail
ID
Name

Description

0

1
MyDestination
This is my Destination
0

2
YourDestination
This is your Destination
EndList

4) RouteStats – Returns the routing state of a router in the system (Aliases – rs)
Command

GetList RouteStats <RouterNumber>

Example:
GetList RouteStats 1

Return Columns

Availability (Follows destination availability and lock state)
SourceID

DestinationID

Lock (T or F)

Example:
BeginList RouteStats 1 2007-07-14_13-15-22_001
Avail
SourceID

DestinationID
Lock

0

1

1

T

0

2

99

F

EndList

5) Scenes – Returns the Scenes of a router in the system (Aliases – sc)
Command

GetList Scenes <RouterNumber>

Example:
GetList Scenes 1

Return Columns

Availability

Name

Example:
BeginList Scenes 1 2007-07-14_13-15-22_001

Avail
Name
0

DanShowScene
0

MarkShowScene
EndList

6) AxiaDevices – Returns a list of Axia Devices in the system according to their type (Aliases – ad)
Command

GetList AxiaDevices <DeviceType>

If DeviceType is blank – returns all Axia devices

Available Device Types include:

AudioNode

GPIO

Driver

Element

Engine
Example:
GetList AxiaDevices Element

Return Columns

Availability

Name

IP

Type

Example:
BeginList AxiaDevices Element 2007-07-14_13-15-22_001
Avail
Name

IP

Type

0

DanElement
172.16.1.4
Element

0

Studio3

172.16.1.5
Element

EndList

7) ElementProfiles – Returns a list of Profiles on a specific Element (Aliases – ep)
Command

GetList ElementProfiles <ElementIP>

Example:
GetList ElementProfiles 172.16.1.4

Return Columns

Availability

ID

Name
Example:
BeginList ElementProfiles 172.16.1.4 2007-07-14_13-15-22_001
Avail
ID
Name

0

1
DanShow

0

2
MarkShow

EndList

8) ProtocolTranslators – Returns a list of Protocol Translators in the System (Aliases – pt)
Command

GetList ProtocolTranslators
Example:
GetList ProtocolTranslators
Return Columns

Availability

ID
Name
Description

Type
ConnectionStyle (Serial/TCP/UDP/UDPSend)
ConnectionPort
Example:
BeginList ProtocolTranslators 2007-07-14_13-15-22_001
Avail
ID
Name

Description
Type

ConnectionStyle
ConnectionPort
0
1
My Translator
For Me

SA Protocol Translator
TCP

8000
0
2
ProphetInterface
For Prophet
Probel General Router
Serial

3
EndList

9) UserPanels – Returns a list of User Panels in the System (Aliases – up)
Command

GetList UserPanels
Example:
GetList UserPanels
Return Columns

Availability

PanelName
FileName
Example:
BeginList UserPanels 172.16.1.4 2007-07-14_13-15-22_001
Avail
PanelName
FileName
0

DanPanel

DanPanel.xml
0

331

331.xml
EndList
10) PanelControls – Returns a list of Panel Controls in a specific Panel by type (Aliases – pc)
Command

GetList PanelControls <PanelName> <ControlType>
If ControlType is blank – returns all Controls on the Panel

Available Control Types include:

Label

Button

Form
Example:
GetList PanelControls DanPanel Button
Return Columns

Availability

ControlName
ControlType
Example:
BeginList PanelControls Button 2007-07-14_13-15-22_001
Avail
ControlName
ControlType
0

DanPanel.DanButton
Button
0

DanPanel.HeadLabel
Label
EndList
GetListVersion

For each command above calling GetListVersion and the same parameters will return a list version number command only in the format:

ListVersion <Command> <Arguments> <Version>
Example:
GetListVersion DanPanel Button
Return:
ListVersion DanPanel Button 2007-07-14_13-15-22_001
